On the Origin of HI in Galaxies

Photodissociation and the "Schmidt Law" for global star formation

A large PDR in the Galaxy ...

- Identified as a large PDR by WM96
 - Galactic confusion problem solved by isolating the feature in velocity in the HI and CO(1-0) data cubes according to the distances of the exciting stars
- Model fit using combined HI & CO(1-0) (AHK04)
 - n ~ 200 cm⁻³
 - $G_0 \sim 0.8$
- HI thickness ~ 1 pc

19 December 2006

$$N(\text{H I}) = \frac{7.8 \times 10^{20}}{(\delta/\delta_0)} \ln \left[\frac{106G_0}{n} \left(\frac{\delta}{\delta_0} \right)^{-1/2} + 1 \right] \text{ cm}^{-2}$$

Allen, Heaton, & Kaufman (2004)

- General features of this equation:
 - $N_1 = N(HI)$ depends on the *ratio* of FUV flux / total volume density;
 - At a given n, N(HI) increases first linearly with FUV flux, then only logarithmically ...
 - values much larger than a few x $10^{21} \approx$ few x $10 M_S / pc^2$ will be rare.
 - At a given FUV flux, N(HI) decreases with increasing n;
 - N(HI) increases with decreasing dust/gas ratio δ/δ_0 .

Obtaining G_0 and N(HI) from the data ...

19 December 2006

FIG. 13.—Peak column densities $(N_{\rm H_{I}})$. The peak column density in the vicinity of each FUV source is measured from the H I map. Column densities generally increase as the distance from the nucleus increases, reflecting the large-scale trend seen in Fig. 2.

19 December 2006

Ron Allen STScl

Smith et.al. (2000)

FUV fluxes of candidate PDRs in M101 ...

FIG. 12.—Derived χ -values. The FUV flux observed at the location of the peak H I is derived from $F_{\rm FUV}$ and $\rho_{\rm H I}$. The values of χ are independent of radius and clustered between $\chi = 0.9$ and $\chi = 10$.

19 December 2006

Observed metallicity gradient ...

FIG. 16.—Dust-to-gas profiles obtained from the metallicity gradients given in Kennicutt & Garnett (1996). The solid line is based on the calibration of Edmunds & Pagel (1984); the dashed line reflects the average of the calibrations of Dopita & Evans (1986) and MRS.

19 December 2006

GMC densities in M101 ...

Figure 6. Total gas volume density in GMCs near a sample of 35 young star clusters in M101. This is all H₂ deep within the cloud. See Figure 19 in Smith et al.(2000) for further details.

Figure 3. Radial distribution of HI surface brightness for the nearby giant Sc galaxy NGC5457 = M101 obtained by averaging the HI data in annular elliptical rings. From Braun(1997), adjusted to an assumed distance of 5.4 Mpc. R_{25} for this galaxy is $13.5' \approx 21$ kpc.

19 December 2006

What does this have to do with the KS law?

• In this picture, the HI in the disks of galaxies is viewed not as a precursor to the star formation process, but as a *product* of it.

- HI is maintained at the observed column densities in the disk by the dissociating FUV flux from massive young stars (mostly B stars).
- The relevance of any specific amount of observed HI column density to discussions of star formation by gravitational instabilities in galaxy disks is not obvious.

The "Global Schmidt Law" ...

- More HI is assumed to produce more stars.
- The physics of this process is not simple.
- There are various approaches under consideration.

Invert the plot ...

Invert the plot ...

19 December 2006

Photodissociation ...

- $N(HI) \sim \log\{1 + kG_0/n\}$
- Treats the UV brightness as the cause and N(HI) as the effect.
- Physics is quite simple.

19 December 2006

"It ain't what you don't know that gets you into trouble.

It's what you know for sure ...

... that just ain't so."

Mark Twain (1835-1910)

19 December 2006