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GPS-TTBP Workshop on GTC Framework Development

UC Irvine, January 24, 2008

20 attendees from UCSD, UCI, UCLA, UCD, USC, U. Texas,
PPPL, & ORNL

Talks and discussions on project overview, GTC status &
application, GTC framework development plan

Near term action items

>

>

GTC CVS version for ORNL pioneer application (Xiao, done)
Version integration (Decyk)

I/O and Daskboard (Klasky)

Particle-field interaction & front tracking in CTEM (Ma)
Optimization for Jaguar (Hall & Ethier)

Parallelization for 100,000+ cores ?



GPS-TTBP Computing Resources

Joint INCITE proposal by GPS-TTBP, GSEP & CPES awarded
8M hours of Jaguar @ORNL

ORNL Jaguar CPU hours: 3.7M (INCITE + Director’s)+4.5M
(250TF pioneer application)

NERSC Franklin MPP hours: 9.5M (~1.5M ORNL hours)
TACC at U. Texas Lonestar & Ranger ?




GTC Physics Modules UC]

Fluid-kinetic hybrid electron model for electrons
» Collisionless trapped electron mode (CTEM) turbulence [Xiao & Lin, TTF08]
» Electromagnetic turbulence with kinetic electrons [Nishimura et al, TTF08]

» Shear Alfven wave excited by energetic particle [Nishimura et al, TTF08]

Perturbative (0f) method for 10ons

» Pinch-like & gradient-driven momentum fluxes [Holod & Lin, APS07 & TTF08]

Multi-species via OO Fortran

»  Energetic particle diffusion by microturbulence [Zhang et al, TTF08]
Guiding center Hamiltonian 1in magnetic coordinates
Global field-aligned mesh: truly global geometry

General geometry MHD equilibrium using spline fit

Fokker-Planck collision operators via Monte-Carlo method



GTC Computational Methods

Finite difference & finite element elliptic solvers

» Iterative method for electrostatic simulation

» Sparse matrix solver (PETSc) for direct solver

» Pade approximation & integral gyrokinetic Poisson equation
Multi-level parallelism

»  Particle-field domain-decomposition: uni-directional MPI
»  MPI-based particle decomposition

» Loop-level parallelization using OpenMP: multi-core
PIC optimization: electron sub-cycling, vectorization

Statistical analysis of fluctuations/particles, and noise control
[Lin TTFO8; Lin et al, PRL2007; Holod & Lin, PoP2007]

Visualization of 3D fluid and 5D particle data

UCI



Fluid-kinetic Hybrid Electron Model in GTC V¢!
Electron response expanded using 6=(m,/m;)2[Lin & Chen, PoP2001]

Lowest order response adiabatic: massless fluid electron
» Remove collisionless tearing mode and its well-known numerical difficulties

» Recover MHD equations when all kinetic effects suppressed; allow o,

Higher order response treats kinetic effects
» Retain wave-electron resonance & magnetically trapped electrons

» Reduce electron noise and relax Courant condition
Penalty: no inductive 6k (k;=0), i.e., no collisionless tearing mode

Model treats rigorously all other k =0 modes: electrostatic JE,
magnetic 0B, zonal flows/fields, all 1deal & resistive MHD modes

Model optimal for drift & Alfvenic turbulence on p, scales

»  Electrostatic ITG/CTEM simulation: linear [Rewoldt, Lin & Idomura,
CPC2007], nonlinear [Lin et al, PPCF2007]

» Toroidal electromagnetic formulation & simulation of drift & Alfven waves
[Nishimura, Lin & Wang, PoP2007]



Effect of finite beta on the ITG linear growth
rate i1s demonstrated
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UCI

Higher order kinetic electron effect is
incorporated into EMGK simulations
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Enhancement of linear growth rate observed with KE.?

aNonlinear electrostatic simulation with kinetic electrons : Lin et al. PPCF
2007 (in press).



GTC Plan UCI

Version integration & control (with Decyk)

Physics modules
»  Full-fion & profile evolution

»  GTC-XGC core-edge coupling (with CPES), turbulence-Alfven wave coupling (with
GSEP), & turbulence-neoclassical coupling

Particle noise analysis and control
»  Characterization of particle noise in full-f

»  Deterministic collision operator (with Hinton)

Particle-field domain-decomposition for 100,000+ cores

PIC optimization for multi-core (with Hall of PERI & Wichmann of Cray, Either)
Visualization of particle-field interaction (with Ma of ITUSV)

Parallel I/O, data streaming, workflow, & dashboard (with Klasky of SDM)
Synthetic diagnostics (with Holland & Tynan)



Gyrokinetic Tokamak Simulation ( ) code: generalized gyrokinetic

particle simulation model

Shaped cross-section; experimental profiles; consistent rotation and

equilibrium E x B flow; linear Coulomb collisions; -
Interfaced with MHD equilibrium codes and TRANSP data base

Kinetic(electrostatic) electrons via split-weight scheme

~PPPL



e Linear like-particle collisions (i-i, e-e):

Caa0f) = C(f, fo) + C(fo,0f)

(drag & diffusion) (effect of perturbed field particles)
e [orentz model for e-i colhslons
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e Poisson Solver for total potential ® = d® + (®) in general geometry
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Kinetic electron model

e Electron physics via split-weight scheme (Manuilskiy & Lee)
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— Linear coupling between turbulent and neoclassical simulations

e Equilibrium E x B shear flow calculated by GTC-NEO simulation (or
simply by radila force balance) is imported to the GTS turbulence
simulation

e On the other hand, the GTS simulation can serve to provide a steady
state turbulence background for the neoclassical simulation to investigate
turbulence impact on neoclassical physics such as bootstrap current.

NSTX-115821 |

— Coupling to reflectometry simulation, providing spatio-temporal fluctuation
background

~PPPL



web-based user interface
full-f capability
multi-ion species

EM
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