

Gas Masses and Gas Fractions: Applications of the Kennicutt-Schmidt Law at High Redshift

Dawn Erb (CfA) Kennicutt-Schmidt Workshop, UCSD December 19, 2006

Overview

- Properties of star-forming galaxies at $z \sim 2$:
 - Star formation rates and surface densities
 - Stellar and dynamical masses
 - Metallicities
- All these better understood with knowledge of gas masses and gas fractions
 - Not yet directly measurable at high redshift
 - Use Kennicutt-Schmidt law to infer gas properties

The Epoch of Peak Star Formation

Dickinson et al 2003

Observational Background I

- $z \sim 2$ galaxies selected by rest-frame UV colors, redshifts confirmed with rest-frame UV spectra
- H α spectroscopy of 114 galaxies — sample large enough for statistics
 - Star formation rates
 - Kinematics and dynamical masses
 - Approximate sizes from spatial extent
 - Metallicities from $[NII]/H\alpha$ ratio

$M \star = 2 \times 10^{11} M_{\odot}$ 60 Q2343 BX610 - z=2.2094 40 f_ν (μJy) 02 0 2.1 2.11 2.12 2.09Wavelength (μm) 100 Q1700 **BX490** 80 2.3957 f_{ν} (μJy) (μJy) 60 40 20 0 2.22 2.23 2.24 2.21 Wavelength (μm)

Observational Background II

- Fit model stellar
 populations to 0.3~8 µm
 photometry, using simple
 constant and exponentially
 declining star formation
 histories
- Determine stellar mass, age, reddening and star formation rate
- Stellar mass most robust parameter
- Similar results, smaller uncertainties when including Spitzer IRAC data

Star Formation at z~2

- Star formation rates from $H\alpha$, UV, mid-IR, X-ray and radio agree to factor of ~ 2
- Mean SFR ~30 M $_{\odot}$ yr⁻¹, up to ~200 M_{\odot} yr⁻¹ (for Chabrier IMF)
- High specific star formation rates indicate active buildup of stellar mass, especially in lower mass galaxies

Extinction-corrected H α vs. UV

Star Formation Rate Surface Density

- Comparable to local starburst galaxies
- None at high end in $z\sim2$ sample because of inability to resolve star formation on small spatial scales
- All above threshold for outflows, $\Sigma_{SFR} > 0.1 \text{ M}_{\odot} \text{ yr}^{-1} \text{ kpc}^{-2}$

Star Formation Powered Galactic Outflows

- Offsets of several hundred km s⁻¹ observed between nebular emission lines, interstellar absorption lines, and Ly α
- Explained by galactic-scale outflows
 - regulate star formation through feedback
 - deposit metals in IGM
 - correlation of galaxies, metal systems seen in absorption
 - local mass-metallicity relation
 - ubiquitous in galaxies with $\Sigma_{SFR} > 0.1 \text{ M}_{\odot} \text{ yr}^{-1} \text{ kpc}^{-2}$

Ly α emission

Star Formation Powered Galactic Outflows

- Offsets of several hundred km s⁻¹ observed between nebular emission lines, interstellar absorption lines, and Ly α
- Explained by galactic-scale outflows
 - regulate star formation through feedback
 - deposit metals in IGM
 - correlation of galaxies, metal systems seen in absorption
 - local mass-metallicity relation
 - ubiquitous in galaxies with $\Sigma_{SFR} > 0.1 \text{ M}_{\odot} \text{ yr}^{-1} \text{ kpc}^{-2}$

Mass outflow rate \sim SFR or higher

Stellar and Dynamical Masses

- mass
- gas fractions?

Comparison of stellar masses from SED modeling with dynamical masses from width of H α emission line

Mean $M_{dyn} \sim 7 \times 10^{10} M_{\odot}$ (excluding AGN), ~2 times larger than mean stellar

Most objects agree within uncertainties... but 10% of sample has $M_{dyn} \gg M_{\bigstar}$

These tend to have young ages, high H α equivalent widths and high SFRs: Young galaxies with high

Need gas masses!

Applying the K-S Law at High Redshift

- Since gas masses can't yet be measured for most galaxies, estimate using K-S law
 - $\Sigma_{\rm SFR} \propto \Sigma_{\rm gas}$
- Use to estimate mass of cold gas associated with star

$$\sim \Sigma_{\rm gas} r_{{
m H}lpha}^2$$

 $\mu = \frac{M_{\text{gas}}}{(M_{\text{gas}} + M_{\star})}$

Testing the K-S Law at High Redshift

- Only one detection of molecular gas in a typical star-forming galaxy at high redshift
- MS1512~cB58, lensed LBG at z=2.7, consistent with local K~S law
 - $\Sigma_{\rm SFR} = 1.9 \pm 0.1 \ {\rm M}_{\odot} \ {\rm yr}^{-1}$ kpc⁻², in starburst regime
 - K-S law predicts $\Sigma_{SFR} =$ 1.6^{+2.3}_{-1.2} M_☉ yr⁻¹ kpc⁻² from measured gas surface density
- CO also detected in luminous submm galaxies

CO (3-2) emission in cB58, from Baker et al 2004

Estimated Gas Fractions

- Mean gas fraction $\sim 50\%$
- Decreasing gas fraction with increasing stellar mass and age
- Objects with $M_{dyn} \gg M_{\bigstar}$ have high gas fractions

Gas, Stellar and Dynamical Masses

- Combined $M_{gas}+M_{\star}$ strongly correlated with M_{dyn}
- $M_{gas}+M_{\bigstar}$ and M_{dyn} agree within a factor of 3 for 85% of sample

Gas, Stellar and Dynamical Masses

- Combined $M_{gas}+M_{\star}$ strongly correlated with M_{dyn}
- $M_{gas}+M_{\star}$ and M_{dyn} agree within a factor of 3 for 85% of sample

Metallicities from Ha, [NII] Spectra

Measuring metallicities with [NII]/H α ratio

[NII] line is weak, detected in individual objects only at high metallicity

Divide sample by stellar mass, construct composite spectra — 14 or 15 galaxies in each bin

Measure [NII]/H α ratio of each composite

Erb et al 2006c

The Mass-Metallicity Relation at $z \sim 2$

- Monotonic increase in metallicity with stellar mass
- Very similar shape to local relation, but offset
- Metallicity ~0.3 dex lower at a given mass compared to local galaxies
- Different evolutionary samples

Erb et al 2006c

Origin of the Mass-Metallicity Relation

Higher gas fractions in low stellar mass galaxies? Loss of metals from outflows in low mass systems?

Metallicity evolution in a closed box system:

Z = metallicity, μ = gas fraction

If metallicity and gas fraction observed: $y_{\text{eff}} = Z/\ln(1/\mu)$

Effective yield y_{eff} constant and equal to true yield y if closed box model applies

Decrease in y_{eff} indicates metal loss from outflows, or gas dilution via infall

y = yield, ratio of mass of metals produced and ejected by stars to mass locked in long-lived stars and remnants

Origin of the Mass-Metallicity Relation

- Modify closed box model for outflow rates $M = f \times SFR$
- Data best described by model with supersolar yield, outflow rate ~ 4 times SFR
- No evidence for differential mass loss across sample
- Mass-metallicity relation driven by decrease in gas fraction as gas converted to stars, modulated by strong outflows in galaxies of all masses

Summary

- Knowledge of gas masses and gas fractions significantly improves our understanding of $z \sim 2$ galaxies
- Direct detection of molecular gas not yet possible for typical star-forming galaxies at high redshift, so use K-S law to infer gas masses
- Results:
 - Young galaxies with low stellar masses probably have high gas fractions
 - Stellar mass + gas mass \approx dynamical mass
 - Gas fraction enables discrimination between models for origin of mass-metallicity relation
 - Best explained by decrease in gas fraction with star formation and strong outflows in galaxies of all masses
- Need direct measurements to test all this!
 - ALMA, H α with adaptive optics